Systems of 1st-order initial-value problems

Consider the following system of two IVPs.

$$y^{(1)}(t) = -3y(t) + 2y(t)z(t)$$

$$y(0) = 7$$

$$z^{(1)}(t) = -4tz(t) - y(t)z(t)$$

$$z(0) = 5$$

1. How would we write this using vector notation?

Answer: Let
$$w_1 = y$$
 and $w_2 = z$ so

$$\mathbf{w}^{(1)}(t) = \begin{pmatrix} -3w_1(t) + 2w_1(t)w_2(t) \\ -4tw_2(t) - w_1(t)w_2(t) \end{pmatrix}$$

$$\mathbf{w}(0) = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

2. How would you author a function in Matlab to return the right-hand side of the ordinary differential equation (ODE)?

Answer:

$$f = @(t, w)([-3*w(1) + 2*w(1)*w(2); -4*t*w(2) - w(1)*w(2)]);$$

3. Approximate the solutions to y(0.1) and z(0.1) using four steps of Euler's method.

Answer:

7	8.225	9.30453125	10.012634670349121	10.62776506630648
5	4.125	3.266484375	2.490324304504394	1.841199689432058

4. How could you code this in Matlab?

Answer:

```
w = [7 5]'
h = 0.025;
for t = 0 : h : 3*h
     w = w + h*f( t, w )
end
```

5. Approximate the solutions to y(0.1) and z(0.1) using two steps of Heun's method.

7	9.051875	10.04340244217662
5	3.3409375	2.069134298980051

4. How could you code this in Matlab?

Answer:

w = [7 5]'h = 0.05; for t = 0 : h : h s0 = f(t, w); s1 = f(t + h, w + h*s0); w = w + h*(s0 + s1)/2 end

5. Approximate the solutions to y(0.1) and z(0.1) using one step of the 4th-order Runge-Kutta method.

7	10.019281775179129
5	2.007191283218939

6. How could you code this in Matlab?

Answer:

w = [7 5]' h = 0.1; s0 = f(0, w); s1 = f(0 + h/2, w + h/2*s0); s2 = f(0 + h/2, w + h/2*s1); s3 = f(0 + h, w + h *s2); w = w + h*(s0 + 2*s1 + 2*s2 + s3)/6

7. Approximate the solution to y(10) using 100 steps of the 4th-order Runge-Kutta method.

 $w_1(10) = 1.931668252068150 \times 10^{-12}$ $w_2(10) = 1.013593401979833 \times 10^{-14}$

8. Of course, if you attempted the previous question, you did not do so by hand, so how did you do it in Matlab?

Consider the following system of six IVPs.

$$u_{1}^{(1)}(t) = u_{2}(t)$$

$$u_{1}(0) = 4$$

$$u_{2}^{(1)}(t) = -2u_{1}(t)$$

$$u_{2}(0) = 5$$

$$v_{1}^{(1)}(t) = v_{2}(t) + u_{1}(t)$$

$$v_{1}(0) = 6$$

$$v_{2}^{(1)}(t) = -3v_{1}(t)$$

$$v_{2}(0) = 7$$

$$x_{1}^{(1)}(t) = x_{2}(t) + v_{1}(t)$$

$$x_{1}(0) = 8$$

$$x_{2}^{(1)}(t) = -4x_{1}(t)$$

$$x_{2}(0) = 9$$

1. How would we write this using vector notation?

$$\mathbf{w}^{(1)}(t) = \begin{pmatrix} w_2(t) \\ -2w_1(t) \\ w_4(t) + w_1(t) \\ -3w_3(t) \\ w_6(t) + w_3(t) \\ -4w_5(t) \end{pmatrix}$$

Answer: Let $w_1 = u_1, \dots, w_6 = x_2$, so
$$\mathbf{w}(0) = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{pmatrix}$$

2. How would you author a function in Matlab to return the right-hand side of the ordinary differential equation (ODE)?

Answer:

$$f = @(t, w)([w(2); -2*w(1); w(4)+w(1); -3*w(3); w(6)+w(3); -4*w(5)]);$$

- 3. Approximate the solution to y(10) using 10 steps of the 4th-order Runge-Kutta method.
 - 2.712451933457805-3.027000268712214-5.921694454527967-8.370218217959568-2.36655772519085218.46386671488615

4. Of course, if you attempted the previous question, you did not do so by hand, so how did you do it in Matlab?

```
h = 1.0;

w = [4 5 6 7 8 9]';

for t = 0:h:(10 - h)

s0 = f(t, w);

s1 = f(t + h/2, w + h/2*s0);

s2 = f(t + h/2, w + h/2*s1);

s3 = f(t + h, w + h *s2);

w = w + h*(s0 + 2*s1 + 2*s2 + s3)/6;

end

w
```

Acknowledgement: Ethan Romero for pointing out the incorrect numbers in Heun's method and a missing 't' in the first system of ordinary differential equations.