
Systems of 1st-order initial-value problems
Consider the following system of two IVPs.

()() () () ()

()
()() () () ()

()

1

1

3 2

0 7

4

0 5

y t y t y t z t

y

z t tz t y t z t

z

= − +

=

= − −

=

1. How would we write this using vector notation?

Answer: Let w1 = y and w2 = z so

()()
() () ()

() () ()

()

1 1 1 2

2 1 2

3 2

4

7
0

5

w t w t w t
t

tw t w t w t

− +
=

− −

=

w

w

2. How would you author a function in Matlab to return the right-hand side of the ordinary differential

equation (ODE)?

Answer:

f = @(t, w)([-3*w(1) + 2*w(1)*w(2); -4*t*w(2) - w(1)*w(2)]);

3. Approximate the solutions to y(0.1) and z(0.1) using four steps of Euler’s method.

Answer:

7 8.225 9.30453125 10.012634670349121 10.62776506630648

5 4.125 3.266484375 2.490324304504394 1.841199689432058

4. How could you code this in Matlab?

Answer:

w = [7 5]'

h = 0.025;
for t = 0 : h : 3*h

 w = w + h*f(t, w)

end

5. Approximate the solutions to y(0.1) and z(0.1) using two steps of Heun’s method.

7 9.051875 10.04340244217662

5 3.3409375 2.069134298980051

4. How could you code this in Matlab?

Answer:

w = [7 5]'

h = 0.05;

for t = 0 : h : h

 s0 = f(t, w);

 s1 = f(t + h, w + h*s0);

 w = w + h*(s0 + s1)/2

end

5. Approximate the solutions to y(0.1) and z(0.1) using one step of the 4th-order Runge-Kutta method.

7 10.019281775179129

5 2.007191283218939

6. How could you code this in Matlab?

Answer:

w = [7 5]'
h = 0.1;
s0 = f(0, w);
s1 = f(0 + h/2, w + h/2*s0);
s2 = f(0 + h/2, w + h/2*s1);
s3 = f(0 + h, w + h *s2);
w = w + h*(s0 + 2*s1 + 2*s2 + s3)/6

7. Approximate the solution to y(10) using 100 steps of the 4th-order Runge-Kutta method.

 w1(10) = 1.931668252068150 × 10–12

 w2(10) = 1.013593401979833 × 10–14

8. Of course, if you attempted the previous question, you did not do so by hand, so how did you do it in

Matlab?

h = 0.1;
w = [7 5]';
for t = 0:h:(10 - h)
 s0 = f(t, w);
 s1 = f(t + h/2, w + h/2*s0);
 s2 = f(t + h/2, w + h/2*s1);
 s3 = f(t + h, w + h *s2);
 w = w + h*(s0 + 2*s1 + 2*s2 + s3)/6;
end
w

Consider the following system of six IVPs.

()() ()

()
()() ()

()
()() () ()

()
()() ()

()
()() () ()

()
()() ()

()

1

1 2

1

1

2 1

2

1

1 2 1

1

1

2 1

2

1

1 2 1

1

1

2 1

2

0 4

2

0 5

0 6

3

0 7

0 8

4

0 9

u t u t

u

u t u t

u

v t v t u t

v

v t v t

v

x t x t v t

x

x t x t

x

=

=

= −

=

= +

=

= −

=

= +

=

= −

=

1. How would we write this using vector notation?

Answer: Let w1 = u1, …, w6 = x2, so

()()

()

()

() ()

()

() ()

()

()

2

1

1 4 1

3

6 3

5

2

3

4

4

5

6
0

7

8

9

w t

w t

w t w t
t

w t

w t w t

w t

−
 +

=
−

 +

 −

=

w

w

2. How would you author a function in Matlab to return the right-hand side of the ordinary differential

equation (ODE)?

Answer:

 f = @(t, w)([w(2); -2*w(1); w(4)+w(1); -3*w(3); w(6)+w(3); -4*w(5)]);

3. Approximate the solution to y(10) using 10 steps of the 4th-order Runge-Kutta method.

 2.712451933457805

–3.027000268712214

–5.921694454527967

–8.370218217959568

–2.366557725190852

18.46386671488615

4. Of course, if you attempted the previous question, you did not do so by hand, so how did you do it in

Matlab?

h = 1.0;
w = [4 5 6 7 8 9]';
for t = 0:h:(10 - h)
 s0 = f(t, w);
 s1 = f(t + h/2, w + h/2*s0);
 s2 = f(t + h/2, w + h/2*s1);
 s3 = f(t + h, w + h *s2);
 w = w + h*(s0 + 2*s1 + 2*s2 + s3)/6;
end
w

Acknowledgement: Ethan Romero for pointing out the incorrect numbers in Heun’s method and a missing

‘t’ in the first system of ordinary differential equations.

